An End to End Data Collection Architecture For
IoT Devices in Smart Cities

Murat Kuzlu
Electrical Engineering Technology
Old Dominion University
Norfolk, VA, USA
mkuzlu@odu.edu

Nasibeh Zohrabi
Electrical and Computer Engineering
Virginia Commonwealth University
Richmond, VA, USA
zohrabin@vcu.edu

Abstract—A smart city environment utilizes different types of
Internet of Things (IoT) devices, i.e., sensors and actuators, to
collect and analyze millions of data to manage assets, resources,
and services efficiently to improve the quality of life. However,
the data collection process is one of the most challenging tasks for
smart cities. To meet the requirements of smart city applications,
a robust and efficient data collection process is needed to
collect data from IoT devices then deliver it to data centers.
This paper proposes an end-to-end data collection architecture
from IoT devices for different smart city applications, such as
smart buildings, transportation, water management, healthcare,
and others, through advanced communication technologies and
protocols and database management approaches. The proposed
architecture includes five main components, (1) IoT Networks,
(2) Server-side MQTT Interfacing, (3) Server-side Streaming,
(4) NoSQL Database, and (5) Web Server. Finally, this paper
provides a case study to demonstrate the effectiveness of the
proposed architecture and discuss each design component in
detail.

Index Terms—Internet of Things (IoT), Smart cities, Data
collection and streaming

I. INTRODUCTION

Advancements in data communication and information tech-
nologies fostered smart devices connected things, called the
Internet of Things (IoT), having embedded electronics and
software. It is estimated that the total number of connected IoT
(Internet of Things) devices will be more than 50 billion by
2022 [1]. The increase of IoT devices also promotes smart city
application development, aiming to improve the quality of life
in big cities by providing efficient and reliable services. With
the availability of IoT technologies, cities can enable many
smart applications easily and effectively for citizens. These ap-
plications include smart parking [2], smart lighting [3], waste
management [4], traffic congestion [5], smart buildings [6],
smart grid [7], and many more. A smart city needs a robust
and efficient data exchange platform to contact the different
systems, applications, types of data sources simultaneously.

Department of Computer Science

Patrick J.
Electrical and Computer Engineering
Virginia Commonwealth University
Richmond, VA, USA
martinp@vcu.edu

Halil Kalkavan Oezguer Gueler
eKare, Inc.
Fairfax, VA, USA

oguler@ekareinc.com

Old Dominion University
Norfolk, VA, USA
hkalkavan @odu.edu

Sherif Abdelwahed
Electrical and Computer Engineering
Virginia Commonwealth University
Richmond, VA, USA
sabdelwahed @vcu.edu

Martin

The data collection process from IoT devices is one of the
biggest challenges in the smart city environment.

During the last decade, different smart applications along
with the data collection solutions are discussed. Authors
in [8] discuss possible solutions of data collection for smart
transportation in the smart city environment. It indicates that
the data collection process is complicated due to the high
number of devices and volume of the data. Therefore, it
needs a common standard interface and data models to store
and analyze the collected data. Authors in [9] propose an
open standard interoperable smart city platform, which allows
sharing resources and creates a smart city data hub. It also
demonstrates the standardized data collection and sharing for
bus and vehicle information use cases. The study [10] presents
a probability-based model addressing the data leakage and big
data security problems in smart cities implemented in C++ in a
simulated environment. In [11], a 5G-based smart city platform
is proposed for data sharing, which supports an easy usage of
the collected data and detects possible abnormal situations.
Authors in [12] propose a data collection scheme to improve
the collaborative mobile sinks in smart cities. Simulation
results indicated that the proposed data scheme provides better
performance than its peer in terms of data collection latency
and the ratio of successful IoT object coverage. The proposed
scheme can reach 96 percent of IoT devices while its peer
can reach only 43 percent for the same collection duration.
The study in [13] investigates the multi-source heterogeneous
data collection approaches to be integrated with the smart city
public information platform.

This paper presents an end-to-end data collection architec-
ture for [oT devices in smart cities. The proposed architecture
will cover all steps from data collection to data visualization.
It is developed and designed based on the most up-to-date
technologies and consists of five key components, namely, (1)
IoT networks, (2) Server-side MQTT interfacing, (3) Server-
side streaming, (4) NoSQL database, and (5) Web server. The

loT Networks MQTT Interface Service-Side Streaming Database Web Server
yoooTohmmmTTTTTmT | e [S veoTTTTTT]
1 - ! L]] f
Buildings ' ' L]
: 9 . §€ kafka o ! i
1 ! 1
: MQTT MQTT \::\‘ MQTT | 7y e |
) | L Client Client | 1+ | Broker Zookeeper 1 a1 LER |
: ‘o | h H :
1 Transportation ' [[i
I L marT < v\ o f :
1 MQTT MQTT ‘:ﬁl‘) ' : 1 i
1 . ; 1 Broker Kafka Kafka Kafka g . |
i Client Client ! 1 Broker 1 = Broker2 Broker 3) H 1
, i Bridge Bridge | ¢ b :
1 1

E Water Management | | ! élg/luQrI;r) —> —>(Ca;snakr)1dra—,>: : Cassandra ——> P> Web server]

' MQTT - - - ' |
E MQTT MQTT —:——i———) Brgker Partitions Partitions Partitions E E : E E
1 | Client Client B S 0 ;
1 [I [|
- ' | i i

1

E Healthcare /E,:/V MQTT ¥ | E
1| marT mMaTT | ! Broker v] :
1 | Client Client = . | i
: [1 : (] :
T L . L T R h

Fig. 1. End to end data collection process steps with main components

proposed end-to-end data collection architecture addresses the
interoperability, scalability, and ease of use issues faced by
conventional data collection architectures. Features and design
considerations of each component of the proposed architecture
are described in more detail as we move forward to the next
sections of the paper.

The rest of the paper is organized as follows. Section II
explains the main components of the proposed end to end
data collection architecture. Section III presents a case study
to demonstrate the effectiveness of the proposed architecture.
Finally, the concluding remarks are given in Section IV.

II. AN END TO END DATA COLLECTION ARCHITECTURE
FOR SMART CITIES

The proposed end-to-end data collection architecture for IoT
devices in smart cities is illustrated in Fig. 1. The architecture
covers five main parts, namely (1) IoT devices, (2) Server-
side MQTT Interfacing, (3) Server-side Streaming, (4) NoSQL
database, and (5) Web server. This section will discuss each
component in further detail.

A. IoT Networks

Distributed, robust data collection is a key aspect to enable
high level applications that incorporate IoT devices. In the
proposed architecture, IoT devices, or nodes, connect to a
communication network that supports the TCP/IP protocol.
Nodes use the Message Queuing Telemetry Transport (MQTT)
[14], a lightweight, standard application protocol, to send
and receive messages across the smart city. MQTT uses
brokers to maintain lists of active topics and provide that
information to MQTT clients that wish to publish or subscribe
to these topics. By using MQTT, we logically partition the
various IoT networks based on their application domain, as
shown in Fig. 1. Each domain defines a hierarchical topic
structure that provides output (data, device status, etc.) and

input (configuration, control, etc.) interfaces that can send or
receive relevant messages. The payloads of these messages are
formally structured using Protocol Buffers [15] to ensure data
is structured correctly for subscribed devices and provide flex-
ibility for device- and server-side algorithm implementation.

As a concrete example, we consider a building IoT network.
All entities in this logical network connect to the server-
side MQTT brokers using their MQTT client interface. The
building topics are organized in a hierarchy like folders and
files on a computer using the forward-slash (‘/”) as a delimiter.
The structure of these topic names conveys meta-data about
the device, such as its spatial location or its unique identifier.
For example, if we consider an edge computing node that is
deployed in a residential building with temperature, humidity,
and CO?2 sensors, the topic that provides the environmental
data might be listed as:

/23220/B_001/F_004/7f8cl9%ec/environment

The top level of this topic structure is a US postal code,
followed by a building identifier, B_001, and specific floor
of that building, F_004. On this floor, there will likely be
dozens of edge nodes equipped with sensors, so each must
have a unique identifier, such as 7f£8c19ec. Finally, the
environment topic indicates the topic output type. Accord-
ingly, the Environment protocol buffer message would be
defined to carry the temperature, humidity, and CO2 values as
well as a sampling timestamp.

B. Server-Side MQTT Interfacing

As mentioned in the prior section, MQTT brokers must
be deployed to queue received messages from publishers and
transmit the messages to subscribers. To handle the multitude
of MQTT clients in the smart city, the server-side MQTT inter-
face requires horizontally scaled MQTT Brokers to manage the
large number of topics as well as provide network resiliency.

This clustering mechanism may be provided by one of several
available MQTT brokers, e.g., EMQX [16], VerneMQ [17].

MQTT Brokers support several security options, such as
open, basic, or Transport Layer Security (TLS). We use TLS
security and OpenSSL to create server keys and certification.
For MQTT Clients, the authentication will be fully functional
TLS with x.509 certificates. MQTT brokers are highly config-
urable, such as setting keep-alive message frequency or server
certificates.

C. Server-side Streaming

Streaming is the core of the proposed end-to-end data
collection architecture. Apache Kafka [18] is selected for the
server-side streaming in the developed architecture, which is
an open-source distributed event streaming platform. Apache
Kafka is a publish-subscribe messaging system, which al-
lows sending messages between processes, applications, and
servers. It provides many advantages in terms of scalability,
reliability, availability for messaging, storage, data integration,
and stream processing. Apache Kafka architecture and interre-
lations between its components are comprehensively explained
in [18]. The architectural components, which consist of Bro-
kers, ZooKeepers, Producers, Consumers, Topics, Partitions,
and Topic Replication Factor, are briefly explained here:

o Kafka Brokers: A Kafka broker is the primary server
in a Kafka cluster. Typically, multiple brokers utilizing
Apache ZooKeeper work together to create the Kafka
cluster (three brokers are used in the developed archi-
tecture).

e Apache ZooKeeper: Kafka brokers use Apache
ZooKeeper to manage and coordinate a Kafka cluster.

o Kafka Producers: A Kafka producer is the data source in
Apache Kafka.

e Kafka Consumers: A Kafka consumer is responsible for
reading data based on the topics and its subscription.

o Consumer Group: A Kafka consumer group is a group
of consumers consuming one topic.

o Kafka Topics: A Kafka topic defines a logical category
to which the data is stored. Any record has to be stored
in a topic.

o Kafka Partitions: Partitions are the primary concurrency
mechanism in Kafka. A topic is divided into partitions
in a Kafka cluster, and those partitions are replicated
through brokers.

o Topic Replication Factor: Topic replication is an essential
factor to achieve a robust and reliable Kafka deployment.
The replication factor used in the developed architecture
is three.

Apache Kafka uses an immutable commit log with a very
simplistic data structure, providing a persistent ordered data
structure. A record cannot be directly deleted or modified,
only appended onto the log after creating it. Each record is
associated with a unique sequential ID known, i.e., offset, to
retrieve data. A cluster architecture is used to be able to create
and update a partitioned commit log for each topic, and all
messages in the same partition are stored in the order based on

import paho.mqtt.client as mqtt
from pykafka import KafkaClient

import time

mqtt_broker = "localhost"
mqtt_client = mqtt.Client("BridgeMQTT2Kafka")

mgqtt_client.connect(mqtt_broker)

kafka client = KafkaClient(hosts="localhost:9092")
kafka_topic = kafka_client.topics['temperature']

kafka producer = kafka_topic.get sync_producer()

def on_message(client, userdata, message):
msg_payload = str(message.payload)
print("Received MQTT message: ", msg_payload)
kafka_producer.produce(msg_payload.encode('ascii'))

print("KAFKA: Just published " + msg_payload + " to topic temperature")

mqtt_client.loop_start()

subscribe to MQTT broker and get latest reading
mqtt_client.subscribe("temperature")

if reading received trigger callback function which published data to Kafka
broker

mqtt_client.on_message = on_message

time.sleep(300)

mqtt_client.loop_end()

Fig. 2. MQTT-Kafka bridge is developed in Python

arriving. Kafka’s producer is responsible for writing to topics,
while Kafka’s consumer is reading from topics. Each record
written by producers is added to the end of the topic commit
logs. Then each record can be read by consumers based on the
offset referring to specific locations in topic logs. A topic is
distributed into one or more partitions to enable concurrency
and provide high scalability and performance. The Kafka
architecture can be customized based on the requirements by
utilizing additional consumers as needed in a consumer group
to access topic log partitions replicated across nodes.

Kafka also offers several APIs, such as the Producer API,
Consumer API, Streams API, and Connector API, to make
deployments effortless and effective. In the developed archi-
tecture, three different frameworks, namely MQTT, Kafka and
Cassandra, need to be linked to each other. These links called
bridges in software development terminology are implemented
in Python. Fig. 2 and Fig. 3 present the current implementation
of the MQTT-Kafka and Kafka-Cassandra bridge.

MQTT and Kafka serve different purposes. MQTT con-
nects hardware, such as a temperature sensor to a publisher-
subscriber server to collect and distribute data, whereas Kafka
provides a highly scalable and reliable publisher-subscriber
framework. The Kafka connects the data from MQTT bro-
kers/clients to a persistent data storage system, namely Cassan-
dra. Kafka is an ideal candidate for scenarios that require high-
performance, scalable data pipelines or data integration across

import time
from kafka import KafkaConsumer
from cassandra.cluster import Cluster

import json

class KafkaCassandraConnect:

self.kafka_consumer = KafkaConsumer(katka topic,
bootstrap_servers=kafka_ip, group_id='group_01")
self.cassandra_cluster = Cluster([cassandra_ip])
self.cassandra_session =
self.cassandra_cluster.connect(cassandra_keySpace)
def insert_to_devices(session, device_id, date_id, temperaturel, valuel):
timestamp = int(time.time())
session.execute(
INSERT INTO devices (id, device_id, date_id, temperaturel, valuel)
VALUES (%s, %s, %s)
(timestamp, device_id, date_id, temperaturel, valuel)
)

print("record added successfully to Cassandra")

def run(self):
for msg in self.katka_consumer:
print("message recieved from Kafka: " + msg.value.decode("utf-8"))

obj = json.loads(msg.value.decode("utf-8"))

self.insert_to_devices(self.cassandra_session, obj["device_id"], ,

obj["date_id"], obj["temperature1"], obj["valuel"])

Fig. 3. Kafka-Cassandra bridge is developed in Python

multiple systems. Similarly, the MQTT protocol is utilized to
collect data from IoT devices. For IoT use cases, especially for
smart city applications where data is collected using sensors,
a MQTT-Kafka-Cassandra pipeline is an adequate solution.
IoT devices can connect to the MQTT broker via the MQTT
protocol. MQTT broker receives and processes messages from
a large number of IoT devices, and Kafka stores collected data
and sends them to related entities for processing messages.

There are four different ways to connect MQTT and Kafka:
(1) Build an MQTT bridge between MQTT Broker and Kafka,
(2) Connect to Kafka via MQTT proxy, (3) Connect MQTT
Broker to Kafka via Kafka Connect, and (4) Connect MQTT
Broker to Kafka via MQTT Broker extension [19]. We chose
the first option, i.e., build an MQTT bridge between MQTT
Broker and Kafka. The bridge-based solution is also preferred
as an alternative to using Kafka Connect and MQTT Broker
extension needing additional installation and configuration,

e.g., Confluent Platform Kafka installation. In the bridge-
based solution, a custom application is developed in Python
as a bridge between the MQTT and Kafka broker. It uses
MQTT and Kafka client libraries to connect to the MQTT and
Kafka brokers. The custom bridge is developed to forward the
message to the Kafka broker.

Before building a bridge between the MQTT and Kafka
broker in Python, which consumes MQTT messages and
forwards them to Kafka, first, we set up fake IoT devices with
Python for test purposes, as shown in Fig 4. In this experiment,
the ToT device sends the room temperature messages to the
MQTT broker.

import paho.mqtt.client as mqtt
from random import uniform

import time

mgqtt broker = "localhost"
mgqtt_client = mqtt.Client("Temperature _Inside")
mgqtt_client.connect(mgqtt_broker)

mqtt_topic = “temperature”

while True:
randNumber = uniform(70.0, 95.0)
mqtt_client.publish(mqtt_topic, randNumber)
print("MQTT: Just published " + str(randNumber) +
" to topic temperature")

time.sleep(3)

Fig. 4. Simulate random room temperature data published to MQTT broker
In the second step, MQTT-Kafka-bridge is developed in
Python, as shown in Fig. 2. It consists of the following steps:

o Define MQTT client - BridgeMQTT2Kafka - and connect
the client to the MQTT broker on localhost.

o Set up a Kafka client on localhost and standard port 9092.

o Define the Kafka topic as “temperature”, and create a
Kafka producer.

« Start loop to receive continuous data.

o Subscribe to MQTT broker and get the latest reading.

e Once the MQTT client receives a message from the
MQTT broker, a callback function named “on_message”
is executed.

o In the callback function, the received MQTT message
is displayed to the terminal before the same message is
produced to a Kafka topic.

In the last step, the Kafka-Cassandra bridge is developed
in Python. The following code snippet, presented in Fig. 3,
shows the functionality.

« First, import relevant modules.
o Initialize a custom KafkaCassandraConnect object by
defining the Kafka consumer, the Kafka topic, server IP,

and group ID. The initialization is concluded by defining
the cluster and session.

o The Kafka consumer is run in a loop until the messages
have been received.

o Each message is decoded into "utf-8” and a JSON object
is created.

o In the last step, the data is inserted into Cassandra
utilizing a Cassandra “insert” query.

D. NoSQL Database

The persistent data storage part of the proposed architecture
is the distributed database. In the developed architecture, time-
series data collected from IoT devices is stored in Cassandra
as it is a distributed database that allows data replication. Cas-
sandra is an open-source NoSQL distributed database system
suited for high frequency and high quantity data. Cassandra’s
main feature is reliability, i.e., storing data on multiple nodes
with no single point of failure [20]. It consists of the following
components: (1) Node: The basic component of Cassandra
where data is stored, (2) Data Center: A collection of nodes,
(3) Cluster: The collection of many data centers, (4) Commit
Log: The place every write operation is logged, (5) Mem-table:
Temporary table where data is hold after data is written in the
commit log, (6) SSTable: Data is flushed to an SSTable disk
file once Mem-table reaches a certain size.

Cassandra stores data in tables where each table is organized
in rows and columns similar to other databases. Tables are
grouped in keyspaces. Each table has a defined primary key,
which is divided into partition keys and clustering columns.
Data can be efficiently retrieved by providing a range of
clustering columns since they are retrieved sequentially from
the disk. Each entry (or row) in a table must contain a partition
key whose Murmur3 Hash is used to assign it to a particular
node in the cluster. Cassandra uses the partition key to index
the data. All rows that share a common partition key make a
single data partition, the basic unit of data partitioning, storage,
and retrieval in Cassandra.

The code example, given in Fig. 5, shows the Cassandra
Query Language (CQL) statement to create the TempSen-
sor (temperature sensor) table. The table consists of several
columns with different data types. The primary key is formed
by combining the device_id, date_id, and the time columns,
out of which the device_id and date_id form the partition key,
and the time forms the clustering column. The parenthesis
around device_id and date_id groups them together to form
the first element of the primary key, and hence it represents
the partition key.

>> CREATE TABLE tempsensor (

device_id text,

date_id text,

time timestamp,

temp double,

PRIMARY KEY ((device_id, date_id), time));

Fig. 5. Create the TempSensor (temperature sensor) table

For a given device_id and given date_id, all rows belong
to the same partition (node), and data is stored sequentially
based on the clustering key, which is the time. Fig. 6 illustrates
that each row has a unique set of primary keys composed of
the device_id, date_id, and time columns. However, all rows
shown belong to the same partition because they have the same
partition key (device_id and date_id) and are stored as a wide
row on a single node.

device_id | date_id | ti | temp

| | 2021-03-31 11:03:20.000000+0000 | 55.6

Fig. 6. Sample TempSensor table entry

E. Web Server

The web application or data visualization and control plat-
form is the last part of the proposed architecture. The web
application provides the visualization and user interface via a
web browser in real-time. Collected data from IoT devices are
stored as time-series data, i.e., Cassandra. The architecture also
allows access to real-time as well as historical data. The web
server fetches data through the Django API from the Cassandra
database and sends the data to the frontend to visualize the
data in dashboards using different charts. Django is a Python-
based web server framework that allows rapid development
and clean, pragmatic design. The web app utilizes React which
is a Javascript library to build rapid user interfaces (UI). The
web app integrates different React components, which fetch
data from API requests from the Django API and displays
data using Google Charts. In addition, Google Charts provides
a library, which is compatible with React]JS. The library can
receive provided data, manipulate it, and visualize the data
in various charts. The Google Charts library is predestined
for web deployments. It is powerful, simple to use for easy
development and integration within web platforms [21]. The
collected data can be charted easily based on the selected chart
object through the embedded libraries. The Google Charts ren-
derer supports several chart types, such as Pie Charts, Column
Charts, Multi-series Column Charts, Bar Charts, Multi-series
Bar Charts, Line Charts, and Multi-series Line. All chart types
use the DataTable class to sort, modify, and filter data and
fetched directly from the Cassandra database.

III. CASE STUDY AND DEMONSTRATION

In the smart city, heterogenous multi-sources generate many
data with different data formats, devices, systems, APIs, etc.
The proposed architecture is designed and implemented using
the most up-to-date protocols and technologies, i.e., IoT,
MQTT, Kafka, Django, React]S, Google Charts, to collect,
store and visualize from multi-sources. This section demon-
strates the visualization of data collected from IoT devices in
a simulated environment. The data is collected from virtual
IoT devices with Python for demonstration purposes. In this
experiment, two IoT devices are created to send different
data values, i.e., temperature and humidity. The IoT devices

send data messages to the MQTT broker through the software
bridge between the MQTT and Kafka broker written in Python.
First, MQTT and Kafka clients are started after initializing
the brokers. Then, the Kafka-Cassandra bridge is initialized
by defining the Kafka consumer, the Kafka topic, server IP,
and group ID. The Kafka consumer is responsible for reading
data based on the topics and its subscription and runs in a
loop until the messages have been received. The data decoded
into “utf-8” and a JSON object is inserted into the Cassandra
database utilizing a Cassandra “insert” query.

In the last step, the web application using Django fetches
data from the Cassandra database and sends the data to the
frontend to visualize the data in charts, implemented using
Google Charts. The developed web interface supports storing
and viewing historical data for analysis. Historical data can be
viewed using the ‘Charts’ page. For example, the temperature
and humidity data are available as charts on the ‘Dashboard’
page. Charts are placed in the center of the page, and the
data points to choose from appear on the right in a widget.
Below the data points widgets are the ‘Auto Update’ and
‘Export Data’ widgets. Clicking on ‘Auto Update’ enables live
streaming, and data is retrieved and updated every minute.
The charts also show a color-coded legend to identify the data
points. ‘Export Data’ widget exports the time-series data in
the time and value format for all the data points mentioned in
the Data Points widget. Fig. 7 shows an sample chart for the
temperature and humidity data in a day, i.e., 24-hour. Data is
obtained from the Cassandra database using the database driver
developed for the proposed architecture. This driver provides
a secure connection to the Cassandra database fetching the
necessary data using its simplified API.

Engineering Building- Office 211B

10 — Temperature

(F)
100 —— Humidity (%)

00 02 04 06 08 10 12 14 16 18 20 22 00

Time (Hour)

Fig. 7. A chart for temperature and humidity data in a day

IV. CONCLUSION

With the availability of IoT devices and advanced broadband
communication technologies, cities become a digital ecosys-
tem fed from multi-sources, i.e., systems, applications, data
sources, etc. The data collected from those heterogeneous
multi-sources is one of the biggest challenges due to the lack of
common standard interfaces, data models, high volume of data
collected. The proposed end-to-end data collection architecture
for 10T devices in smart cities addresses the interoperability,
scalability, and ease of use issues faced by conventional

data collection architectures. It is developed based on the
most up-to-date technologies and consists of several steps
to meet requirements, namely, (1) IoT Networks, (2) Server-
side MQTT Interfacing, (3) Server-side Streaming, (4) NoSQL
Database, and (5) Web Server. Enabling the IoT devices hosted
in each node is the first step of the data collection process.
MQTT protocol is selected to collect data from IoT devices,
widely used in the industry due to its simplicity and low
bandwidth requirement for messaging. Each IoT device acts
as an MQTT client. MQTT broker is the second step to queue
the received messages from the publisher and the subscribers.
The Mosquitto broker is selected to be used in the proposed
architecture, including the broker/server itself and MQTT
client libraries. Streaming is the most critical step in the data
collection process. Apache Kafka, as a scalable, reliable, and
elastic real-time platform for messaging, is selected to achieve
the server-side streaming task. In the architecture, time-series
data collected from IoT devices is stored in Cassandra. It is a
distributed and an open-source NoSQL database system. The
last step is the web server built on Django with React and
various other application interfaces to provide a robust web
platform for users. Web server using Django APIs fetches
data from Cassandra and visualizes the collected data by using
Google Charts.

This study demonstrates an end-to-end data collection archi-
tecture for IoT devices in smart cities using the most up-to-
date technologies. As future work, the proposed data collection
architecture will be evaluated in terms of performance, i.e.,
availability, latency, and scalability.

ACKNOWLEDGMENT

This work is supported by the Commonwealth Cyber Initia-
tive (CCI), an investment in the advancement of cyber R&D,
innovation, and workforce development in Virginia. For more
information about CCI, visit cyberinitiative.org.

REFERENCES

[1] “IoT Connections to Grow 140% to Hit 50 Billion by 2022
https://www.juniperresearch.com/press/iot-connections-to-grow-140pc-
to-50-billion-2022, Accessed May 2021.

[2] 1. Aydin, M. Karakose, and E. Karakose, “A navigation and reser-
vation based smart parking platform using genetic optimization for
smart cities,” in 2017 5th International Istanbul Smart Grid and Cities
Congress and Fair (ICSG). 1EEE, 2017, pp. 120-124.

[3] E. Bingdl, M. Kuzlu, and M. Pipattanasompom, “A lora-based smart
streetlighting system for smart cities,” in 2019 7th international Istanbul
smart grids and cities congress and fair (ICSG). 1EEE, 2019, pp. 66—
70.

[4] S. S. Chaudhari and V. Y. Bhole, “Solid waste collection as a service
using iot-solution for smart cities,” in 2018 International Conference on
Smart City and Emerging Technology (ICSCET). 1EEE, 2018, pp. 1-5.

[5] R. Goudar and H. Megha, “Next generation intelligent traffic man-
agement system and analysis for smart cities,” in 2017 International
Conference On Smart Technologies for Smart Nation (SmartTechCon).
IEEE, 2017, pp. 999-1003.

[6] A. Nugur, M. Pipattanasomporn, M. Kuzlu, and S. Rahman, “Design and
development of an iot gateway for smart building applications,” IEEE
Internet of Things Journal, 2018.

[71 M. Kuzlu, M. M. Rahman, M. Pipattanasomporn, and S. Rahman,
“Internet-based communication platform for residential dr programmes,”
IET Networks, vol. 6, no. 2, pp. 25-31, 2017.

[8]

[9]

[10]

(1]

[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

S. N. Shukla and T. A. Champaneria, “Survey of various data collection
ways for smart transportation domain of smart city,” in 2017 interna-
tional conference on i-smac (iot in social, mobile, analytics and cloud)(i-
smac). 1EEE, 2017, pp. 681-685.

H. M. Nguyen, J. Byun, K. Kwon, J. Han, W. Yoon, N. Lee, H. Kim,
N. Pham, D. Kim et al., “Oliot-opencity: Open standard interoperable
smart city platform,” in 2018 IEEE International Smart Cities Confer-
ence (ISC2). 1EEE, 2018, pp. 1-8.

V. Dattana, K. Gupta, and A. Kush, “A probability based model for big
data security in smart city,” in 2019 4th MEC International Conference
on Big Data and Smart City (ICBDSC). 1EEE, 2019, pp. 1-6.

J. Kim, S. Jang, D. Jee, E. Ko, S. H. Choi, and M. K. Han, “5G based
smartcity convergence service platform for data sharing,” in 2020 In-
ternational Conference on Information and Communication Technology
Convergence (ICTC). 1EEE, 2020, pp. 1522-1524.

F. Chehbour, Z. Doukha, S. Moussaoui, and M. Guerroumi, “Conges-
tion aware data collection with mobile sinks in smart city,” in 2020
International Symposium on Networks, Computers and Communications
(ISNCC). IEEE, 2020, pp. 1-7.

S. Lehner, J. Horstmann, and J. Schulz-Stellenfleth, ‘“Terrasar-x for
oceanography mission overview,” in IGARSS 2004. 2004 IEEE Inter-
national Geoscience and Remote Sensing Symposium, vol. 5. IEEE,
2004, pp. 3303-3306.

“Message queuing telemetry transport,” https://mqtt.org/mqtt-
specification/, accessed May 2021.

“Protocol buffers,” https://developers.google.com/protocol-buffers, Ac-
cessed April 2021.

“Emgx,” https://www.emqx.io/products/broker, Accessed May 2021.
“Vernemq,” https://github.com/vernemq/vernemq, Accessed May 2021.
“Apache Kafka Architecture: A Complete Guide,”
https://www.instaclustr.com/apache-kafka-architecture, Accessed
May 2021.

“MQTT and Kafka,” https://medium.com/python-point/mqtt-and-katka-
8e470eff606b, Accessed May 2021.

“Apache cassandra, open source nosql database,”
https://https://cassandra.apache.org/, Accessed May 2021.

“What is google charts?” https://www.w3schools.com/whatis/whatis-
google-charts.asp/, Accessed May 2021.

